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I. Introduction

The occurrence of unrealistic 500 mb vorticity "wave trains" and
associated disturbances in the sea level.pressure field had been noted on
many occasions. A series of numerical experiments was carried out in an
effort to overcome these model deficiencies. A fair degree of success has
been achieved by modification of the smoothing operation performed as a
part of the time integration of the LFM. This note will present the elements
of the change introduced and a simple numerical analysis of the revised
method.

O ~~~~~~~~~~~~~~~~~2. Numerical Method

The time integration technique used in the LFM model may be simply
analyzed by treating the idealized case of a pure gravity wave. Let 4 denote
a geopotential (of a free surface) and u denote the fluid speed. The
equations are

Du = 

(1)
_= -_ c2 Du

: a~~t Dx

in which c is the phase speed of the wave.

The numerical method of time integration may be expressed by the
equations

un+i un-1 n
u__ _=n - i k n
2At

(2)

- q n-l = - c2 i k u`

2At



-2-

The superscript n denotes the time step counter; k is the horizontal
wave number incorporating spatial truncation error; At is the time step
interval, and i = /-1. It has been assumed that

u - un eikxnU U kx(3)

and we may note that

(sin kAx
k + k i=. (4)kAx)

The bar overriding the n-l values denotes a spatial smoothing of those
fields. The smoother now used in the LFM is a 25-point operator at all
points two or more grid intervals removed from the boundary. At points
only one interval from the boundary, a nine-point operator is used.

For simplicity, we consider only the one-dimensional (fivepoint) form
of the operator that is applied at the bulk of the interior grid points.
The operator involves only one parameter, 8, and has the form

u(x) = - 2 u(x-2Ax) + 4a2 u(x-Ax) + (1-662) u(x)

Db~ ~ + 482 u(x+AX) - 82 u(x+2Ax) (5)

When the operator defined by (5) is passed over a wave, of the form
given in (3), one obtains

u = R(k)u (6)

with R(k) = 1 - 2a2[3 - 4 cos kAx + cos 2 kAx] (7)

or R(k) = 1 - [2B(1 - cos kAx)] 2 (8)

A stability analysis of the system of equations (2) can be carried out
by assuming that

un U n
$n = p (9)

Provided that I/ is less than unity, the numerical solution is considered
to be linearly stable.
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Substitution of (9) into (2) yields a pair of quadratic equations for [:

2 _ R(k) = i 2kcAt C (10)

The four roots are

= [R(k) - (kcAt)2L + ikcAt

= [R(k) - (kcAt) 2 ]½ - icAt
2

=_[R(k).- (kcAt) 2 ] + ikcAt (11)
3

=-[R(k) - (kcAt)2] - ikcAt
4

We assume that R(k) > 0, and find that provided

kcAt < R(-k- (12)

the solution will be in the form of a damped wave, i.e., it will be
computationally stable. All roots have the same magnitude, viz.,

M41 = TVR () (13)

W_ ~ In order to give the condition (12) more specificity, one may introduce
(4) for k and get

At < / Ax R(k) (14)
c (sin kAx)

The Vl has been introduced to account for the general two-dimensional
problem. The parameter c is not strictly constant and should be given a
value appropriate for a wave moving in a "zonal" current. A reasonable
estimate for c is 400 m/sec. The value assigned to Ax is 120 km, based
upon the recognition that only north of 150 latitude are the equations of
the LFM solved without interaction with the imposed boundary conditions.
With these estimates inequality (14) may be rewritten as

,R (k) 
At < [sin kAx J 424 sec. (15)
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3. Computational Analysis and Experimental Results

When the RMB assumed responsibility for the LFM, the parameter 8 in
the smoothing operator had the value 0.022, but the smoothing routine
"SMOH" operated only upon the parameters, p0 and 0, and only up to two
grid intervals from the boundary. The Robert time filter was applied to
the precipitable water, winds, p. and 0.

The first model modification introduced was the addition of the
divergence damper term in the wind equations, but only in the region close
to the boundary.

It was found that the sigma coordinate parameters retained considerable
noise in spite of the smoothers employed in the model. In experiments,
suggested by Mathur, we extended the smoothers up to the boundaries, varied
the smoothing coefficient- S and applied the smoother to the winds as well
as pa and 0.

In November of this year, a modified smoother routine called SMOHEX was
introduced into the operational model. The parameter a in the smoother was
set at 0.030, and the smoother was applied as outlined to all variables
except the precipitable water. The divergence damper and time filtering
of all but precipitable water were deleted.

' In spite of the improvement achieved with the SMOHEX routine and its
minimaq modification of the meteorological aspects of the modelrs forecasts,
there remained certain problems of the type mentioned in the Introduction.
The experiments designed to correct these deficiencies involved the
variation of the parameter S in the SMOHEX routine. Results indicated that
8 values of .10 and .20 were both stable and also minimized the deficiencies
of the forecasts. An experiment with 8 = .25 was unsuccessful due to an
apparent computational instability.

In the experiments cited, the time step At was held at 360 secs, the
presently operational value. Parallel experimentation was made with longer
time steps, 400 and 450 secs,corresponding to nine and eight steps per hour
versus the ten steps taken operationally in each forecast hour. The 400 sec
time step was stable but the 450 sec step was not.

It has been found that these results are explicable by means of the
mathematical analysis presented in section 2.

In figure 1, the response function R(k) is plotted for various choices
of the parameter S. In figure 2, the maximum value of At satisfying the
inequality (12) is plotted as a function of S and kAx.
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The instability of the computation with a equal to 0.25 and At equal
to 360 secs is supported by the analysis. The maximum stable value of At
is about 290 secs when 0 = 0.25.. The choice of At equal to 360 secs is
shown to be satisfactory for 8 equal to 0.20 or smaller values.

We also observe that with a zero value of a, i.e. no smoothing, linear
stability is predicted for At'lIesi -, than 424 secs. This supports the
stability observed in the experiments with small 8 (e.g., .022) and At
equal to 400 secs and conversely the instability observed with At equal
to 450 secs.

5. Diffusion and Smoothing Compared

The response function for a equal to 0.1 is almost unity for kAx less
than n/4. The smoothing, however, repeatedly damps the solution as shown
in equation (13). After 240 steps the response is given by

R = [/(i- ]240 (16)
240

In figure 3, R - is plotted for a equal to 0.1. One notes that for
kAx equal to r/4 te value of R2 4 0 is only two-thirds. Ninety percent of
the wave amplitude is retained only for those waves for which kAx is less
than about w/8, which corresponds to a wave length of about sixteen grid
intervals (say between two and four thousand kilometers).

Also shown in figure 3 are the response curves for a 24-hour integration
using a Fickian type diffusion (evaluated at the n-l time level) with
constant diffusion coefficient between 5 x l04 and 5 x l05 m 2 sec 1.
Comparison of the curves shows, in the authors' opinion, some clear merits
to the smoothing operator technique now used in the LFM.

The response for the diffusion operator is of the form

4At D :
RD(k) = + A ( 1- cos kAx) (17)

Comparison of this expression with that given in (8) shows that
equivalence could be effected if the coefficient D was itself a function
of k, i.e.,

D = (x) ( - cos kAx) (18)
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It should be noted that in some general circulation models, D is made
a function of the wind field deformation. This will effect a variation
of D with wave number since the deformation will tend to be larger as k
increases. It is possible, therefore, that SMOHEX is simulating a non-
linear diffusion.

6. Conclusion

The results obtained experimentally with the new LFM time integration
technique have been shown to be explicable by means of a simple numerical
analysis. Examination of the forecast charts indicates that the
modifications are effective in selectively removing the spurious vorticity
and sea level features while leaving the precipitation forecast almost
unchanged.

It should also be noted in conclusion that the new technique has been
integrated to 3 days, 72 hours, with very well behaved sigma and pressure
coordinate fields.
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